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Abstract. We present a general theory of adiabatic rapid passage (ARP) with intense, linearly chirped
laser pulses. For pulses with a Gaussian profile and a fixed bandwidth, we derive a rigorous formula for
the maximum temporal chirp rate that can be sustained by the pulse. A modified Landau-Zener formula
displays clearly the relationships among the pulse parameters. This formula is used to derive the optimal
conditions for efficient, robust population transfer. As illustrations of the theory, we present results for
two- and four-level systems, and selective vibronic excitation in the I2 molecule. We demonstrate that
population transfer with chirped pulses is more robust and more selective than population transfer with
transform-limited pulses.

PACS. 33.80.-b Photon interactions with molecules – 42.50.-p Quantum optics

1 Introduction

The problem of population transfer in a two- (or n-) level
system is a venerable one, dating back to the early days of
quantum mechanics [1–4]. Renewed interest in this prob-
lem is a result of recent efforts to use lasers to control
the course of chemical reactions [5–11]. Many proposed
control schemes rely on the ability to start with a pure
initial state, or an ensemble of identical initial states. For
two-level systems, the method to create such states is
well-known from the theory of magnetic resonance [12].
A narrow-band source of radiation is tuned to the reso-
nance frequency. When the integrated area of the pulse is
equal to π, complete population transfer occurs from the
initial state to the final state.

The π-pulses method, while effective in certain cases, is
not in general a robust method for population transfer. In
particular, the results are highly sensitive to variations in
the pulse area, and to inhomogeneities in the sample [13].
In addition, for an n-level system in which many initial
states and final states lie within the bandwidth of the exci-
tation source, it is virtually impossible for a single pulse to
satisfy the π condition for all transitions simultaneously.

A much more robust method for population inversion
is adiabatic rapid passage (ARP) [14–16]. In this scheme,
the radiation is tuned above (or below) the resonance fre-
quency, and the radiation (or the level itself) is swept
through resonance. If the process is performed adiabat-
ically, or √

Ω2(t) +∆ω2(t)� |d/dt θ(t)|, (1)
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the desired final state can be populated with 100% effi-
ciency [15]. In equation (1), Ω(t) is the Rabi frequency,
Ω(t) = µE(t), where µ is the dipole moment and E(t)
is the laser field. The frequency detuning, ∆ω(t), is de-
fined as ∆ω = ω(t)−ω12(t), where ω12(t) is the transition
frequency, and ω(t) is the radiation frequency. The phase
angle, θ(t), is given by θ(t) = tan−1[∆ω(t)/Ω(t)]. Assum-
ing that the temporal profile of the laser field is a slow
function of time during the population transfer, and that
Ω2(t)� ∆ω2(t). we can write this equation in the follow-
ing simple form,

Ω2
0 � |d/dt ∆ω(t)|, (2)

where Ω0 is the peak Rabi frequency.
The first applications of ARP were performed in mag-

netic resonance [12,17]. In the optical regime, the initial
experiments used a fixed laser frequency and a DC field to
sweep the transition through resonance [18,19]. In another
approach, a molecular beam was passed through a laser
focus, and the curvature of the focus was used to provide
the frequency sweep. More recent methods for population
transfer via ARP include STIRAP (stimulated Raman
adiabatic passage) [20], and its variants such as APLIP
(adiabatic passage on laser induced potentials) [21,22],
and time-gating [14,23]. In these methods, a pair of laser
pulses is used to adiabatically couple an initial state and
a final state through a third (generally non-populated)
state. The timing between the pulses and the time-varying
intensity profiles are used to achieve selectivity.

With the advent of short, intense pulses, and the de-
velopment of laser pulse shaping technology, a new, and
potentially more general method for selective population
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transfer has emerged. Rather than relying on precise mod-
ifications to the potentials, it is now possible to apply the
required frequency modulation directly to the excitation
pulse [24–26]. This idea has been suggested as a way of
performing ladder-climbing (sequential vibrational exci-
tation) in small molecules [27–38]. One promising imple-
mentation is RCAP (Raman chirped adiabatic passage),
in which two chirped pulses are used in an off-resonance
Raman configuration [39,40]. Recently, use of a molecu-
lar “π pulse” using intense, positively chirped pulses, has
been suggested as a general method for population trans-
fer in molecules [41,42]. This method is a specific exam-
ple of ARP by chirped pulses with large frequency band-
widths. Experimental verification of ARP has now been
realized [15,16,43–45].

In this paper, we present a detailed analysis of the
parameters governing the successful implementation of
ARP. We derive a modified Landau-Zener formula that al-
lows the important pulse parameters to be identified, and
bounds to be placed on their values. Finally, we discuss a
number of issues regarding experimental implementation
of ARP that have sometimes been overlooked in the litera-
ture. As computational examples we consider generic two-
level and four-level systems, and selective vibronic popu-
lation transfer in iodine.

2 Basic properties of chirped laser pulses

In this section we review the basic properties of chirped
laser pulses, and derive some relations among these pa-
rameters that will be useful in the following discussion.
Many of the results in this section are well-known, or can
be derived easily. We present them here for completeness,
and for reference in the following discussion.

For simplicity we consider a Gaussian functional form
for the electric field. We note that other forms, such as
hyperbolic secant are possible, and may have advantages
in certain applications [33]. The Gaussian field can be
written

E(t) = E0 exp
[
− t2

2τ2
− iω0t− iα

t2

2

]
, (3)

where E0 is the peak amplitude, τ
√

ln 16 is the pulse du-
ration (full width at half-maximum, FWHM), ω0 is the
center frequency, and α is the linear temporal chirp. The
Fourier transform of equation (3) can be performed ana-
lytically to give

E(ω) = E′0 exp
[
− (ω − ω0)2

2Γ 2
+ iα′

(ω − ω0)2

2

]
, (4)

where E′0 is the peak amplitude, Γ
√

ln 16 is the frequency
bandwidth (FWHM), and α′ is the linear spectral chirp.

For simplicity in the following discussion, we will sup-
press the numerical factor

√
ln 16 and refer to τ as the

pulse duration and Γ as the bandwidth. We will also as-
sume that the chirp is applied to the pulse using conven-
tional linear optics (e.g., via a grating or prism pair).

For transform-limited pulses (i.e., pulses with zero
chirp), Γ = 1/τ0, where τ0 is the transform-limited pulse
duration. However, for chirped pulses, the pulse dura-
tion and bandwidth depend on the chirp via the following
relations,

τ2 =
1
Γ 2

(
1 + α′2Γ 4

)
, (5)

and

Γ 2 =
1
τ2

(
1 + α2τ4

)
. (6)

The linear temporal chirp and the linear spectral chirps
are related by the following equations,

α = α′
Γ 4

(1 + α′2Γ 4)
, (7)

and

α′ = α
τ4

(1 + α2τ4)
· (8)

As these formulas show, chirping a pulse increases its du-
ration. To conserve the pulse energy, P0 = E2

0τ , for a
pulse with a fixed bandwidth, the peak intensity of the
chirped pulse must be reduced as the duration increases.
This is the principle behind the commonly-used chirped
pulse amplifier [46], for example. The dependence of the
intensity on the chirp is given by

I = I0
1√

1 + α′2Γ 4
, (9)

where I0 is the peak intensity of the transform-limited
pulse. In terms of the Rabi frequency, this equation can
be rewritten as

Ω0 = Ω0
1

4
√

1 + α′2Γ 4
, (10)

in which Ω0 is the peak Rabi frequency of the transform-
limited pulse.

As can be seen in the above relations, the quantities α,
α′, Γ , τ and I are not independent, and are, in fact, related
in a fairly complex fashion. The relationships among some
of these quantities are shown in Figure 1. Note, in this
figure, that α and α′ have been scaled by τ2

0 . This gives the
figure a universal form that is valid for all pulse durations
and chirps. Note also that the range of α′ is from −∞ to
+∞, while α has a finite maximum and minimum value.
The maximum temporal chirp can be determined from
equation (7) to give

|αmax| =
Γ

2τ0
=

1
2τ2

0

· (11)

When α = αmax, the value of the linear spectral chirp is

α′ = ±τ2
0 , (12)
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Fig. 1. Relationships among the parameters of linearly chirped
Gaussian laser pulses for a pulse with a fixed frequency band-
width. Panel (a) shows the dependence of the scaled intensity
versus the scaled linear spectral chirp, panel (b) shows the
scaled pulse duration versus the scaled linear spectral chirp,
and panel (c) shows the scaled linear temporal chirp versus
the scaled linear spectral chirp.

and the pulse duration is

τ(αmax) =
√

2τ0. (13)

Equation (11) expresses the physically reasonable (and ex-
act mathematical) result that a laser pulse with a fixed
bandwidth can sustain only a chirp large enough such that
the bandwidth is chirped to zero over the duration of the
pulse. This point must be considered when designing ex-
periments for a laser system with a fixed bandwidth.

3 Modified Landau-Zener formula for ARP
in two-level systems with chirped pulses

As an application of the results derived in the previous
section, let us consider the case of population transfer in a
two-level system. The optimal transfer occurs by sweeping
the frequency through resonance at the center time of the
pulse. This implies that ∆ω = αt, where α is the linear
temporal chirp. The Schrödinger equation for this system
in the rotating wave approximation (RWA) is

i
∂

∂t

(
ψ1(t)

ψ2(t)

)
= −

(
0 Ω(t)/2

Ω(t)/2 αt

)(
ψ1(t)

ψ2(t)

)
(14)
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Fig. 2. Population transfer by adiabatic passage in two-level
system. The duration of the pulse is τ0 = 10 fs. For the solid
line, α = 0.5 × 10−2 fs−2, for the dashed line, α = 2.5 ×
10−2 fs−2, for the long-dashed line, α = 5 × 10−2 fs−2, and
for the dot-dashed line, α = 25× 10−2 fs−2.

where Ω(t) = µ12E(t)/~ is the time-dependent Rabi fre-
quency, µ12 is the dipole moment, and E(t) is the pulse
envelope.

As an example of the well-known dynamics of popu-
lation transfer in a two-level system, Figure 2 shows the
population transferred from the lower state to the upper
state as a function of the peak Rabi frequency for several
different values of the temporal chirp, α. The pulse dura-
tion, τ , in this figure is set to 10 fs. As can be seen in the
figure, when α = 0.5×10−2 fs−2, 100% population transfer
is achieved, but the results are not robust to small changes
in the Rabi frequency. However, when α = 5.0×10−2 fs−2

or larger, the results are quite robust.
Figure 2 can be interpreted in two different ways. First,

with a transform-limited pulse the transition can be swept
through resonance with an external DC field. In this case,
the figure shows that a sweep rate of 5.0 × 10−2 fs−2, or
266 cm−1/fs, is required for robust population transfer.
A second way of interpreting the figure is to assume that
the transition frequency is fixed and the frequency sweep
is achieved with a chirped laser pulse. Here, though, we
must be careful about how the pulse parameters are speci-
fied. As shown in equation (6) a pulse duration of τ = 10 fs
and a chirp of α = 5.0× 10−2 fs−2 requires a bandwidth
corresponding to a transform-limited pulse with a dura-
tion of τ0 = 2.0 fs. For a chirp of α = 25 × 10−2 fs−2,
the corresponding transform-limited pulse is τ0 = 0.4 fs.
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Fig. 3. Population transfer in a two-level system as a function
of the pulse area S and scaled temporal linear chirp ατ2. The
center frequency of the laser is on-resonance with the transi-
tion. The isolines in the plot represent final yields of 0.99 (solid
line), 0.80 (long-dashed line), 0.50 (dashed line), and 0.10 (dot-
ted line).

This point has led to some confusion in the literature
about the duration of a pulse required to achieve a de-
sired outcome. For example, αmax for a transform-limited
pulse of 10 fs is 0.5×10−2 fs−2. However, as can be seen in
Figure 2, increasing α to a value greater than αmax leads
to more robust population transfer. Physically, though,
such values of α imply that the bandwidth of the pulse
increases during the chirping process. This is impossible
if the chirp is applied via linear optics.

To analyze the robustness of ARP for a fixed pulse
duration, Figure 3 shows a plot of the excited state pop-
ulation after the pulse is over as a function of the pulse
area, S, where

S =
∫
Ω(t)dt =

√
2πΩ0τ, (15)

and the scaled temporal chirp rate, ατ2. Once again, these
scaled variables allow a universal plot of all possible pulse
parameters (for a linearly chirped, Gaussian pulse). The
figure shows pronounced areas of 100% population trans-
fer near the π-pulse solutions, when S = (2n + 1)π and
α = 0. Roughly, as can be seen in the figure, robust areas
of ARP are restricted by the conditions

|α|τ2 � 1, (16)

and

|α|τ2 � Ω2
0τ

2. (17)

The latter relation is identical to the the adiabatic condi-
tion in equation (2). When this condition is obeyed, the
Landau-Zener formula [2,3],

P2 ≈ 1− exp
{
−πΩ

2
0

2α

}
, (18)

can be used to calculate the population transfer to the
excited state. Note that the additional condition that the

pulse duration, τ , must be much larger than the transition
time, Ω0/α [47,48],

Ω0

α
� τ, (19)

is not operational here. In general, when the adiabatic
condition, equation (17), is satisfied, and the chirp is cho-
sen according to equation (16), the parameters lie in the
robust area of ARP, in which the Landau-Zener approxi-
mation is valid and accurate.

Figure 3 illustrates concisely the parameter ranges nec-
essary for robust population transfer via ARP. However,
for experimental implementation of ARP this represen-
tation is not the most convenient, because each point in
Figure 3 corresponds to a laser pulse with a different fre-
quency bandwidth. If, for example, τ is set to 10 fs, as
α changes from 0 to 40 × 10−2 fs−2, the bandwidth in-
creases by nearly a factor of 40. Since most lasers operate
at a fixed (or nearly fixed) bandwidth, a more meaning-
ful representation is one in which the bandwidth is fixed.
With a fixed bandwidth, the two independent parameters
are the spectral chirp and the intensity (or peak Rabi fre-
quency). All remaining parameters are determined by the
relations in equations (5–10).

In the fixed bandwidth representation, the Landau-
Zener formula can be written in terms of Ω0, the peak
Rabi frequency of the transform-limited pulse, and α′, the
linear spectral chirp. Using equations (7, 10, 18), we obtain

P2 ≈ 1− exp
{
−πΩ

2
0

2α

}
= 1− exp

{
−πΩ

2

0τ
2
0

2

√
1 + α′2/τ4

0

α′/τ2
0

}
· (20)

In this form of the Landau-Zener formula it is apparent
that in the limit of

α′/τ2
0 � 1, (21)

we have the following limits for the pulse duration,

τ ≈ α′

τ0
, (22)

and the chirp,

α ≈ 1
α′
· (23)

In these limits, the Rabi frequency is

Ω0 ≈ Ω0
τ0√
α′
, (24)

and the Landau-Zener formula reduces to

P2 ≈ 1− exp
{
−π

2
Ω

2

0τ
2
0

}
· (25)

It is clear from equation (25) that as τ0 increases, P2, the
population on the excited state approaches its maximum
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Fig. 4. Population transfer in a two-level system as a func-
tion of the transform-limited pulse area S0 and scaled spec-
tral linear chirp α′/τ2

0 . The center frequency of the laser is
on-resonance with the transition. The isolines in the plot rep-
resent final yields of 0.99 (solid line), 0.80 (long-dashed line),
0.50 (dashed line), and 0.10 (dotted line).

value. Note, in this equation, that the population transfer
is governed by the parameter

ε = Ω
2

0τ
2
0 , (26)

which, in contrast to the conventional Landau-Zener for-
mula (Eq. (18)), does not depend on the chirp rate. Since
the condition of equation (21) is achieved readily with
short femtosecond pulses, this analysis shows that the
chirp is not the dominant factor in controlling popula-
tion transfer over a large range of pulse widths and in-
tensities. This observation may aid in the design of future
experiments.

To investigate the robustness of population transfer via
ARP with a fixed frequency bandwidth, Figure 4 shows a
universal plot similar to Figure 3. In this case, however,
the bandwidth is fixed, and the relevant variables are the
scaled pulse area and the scaled linear spectral chirp. Once
again, the π-pulse solutions are visible, and the robust
areas are restricted by the adiabatic condition to

Ω
2

0 τ
2
0 � 1, (27)

and the limit described by equation (21).
Although Figures 3 and 4 are similar topologically, the

difference between them is that all points in Figure 4 can
be attained by a laser system with a single, fixed band-
width. In Figure 3, however, each point requires a source
with a different bandwidth. As the figures show, large ar-
eas of robust ARP can be achieved with chirped pulses,
while the π-pulse solutions, as expected, have small areas
of stability.

As a final note, we would like to point out that while
ARP with a chirped laser pulse, and ARP via a sweep of
the transition frequency can both produce robust popu-
lation transfer, the methods differ both in the complexity
of their implementation and in the physical limits on the
pulse parameters. In the case of sweeping the transition
frequency, the chirp can be varied independently of the

δ

δ

E (t)

|0>

|1>

|2>

|3>

Fig. 5. Schematic for population
transfer in a four-level system.

intensity and pulse duration, while in the case of chirped-
pulse ARP, the pulse parameters are coupled, and cannot
be varied independently.

4 ARP in multi-level systems with chirped
pulses

To generalize the results for the two-level system in the
previous section, let us consider a system consisting of a
single initial state and a manifold of final states, as in
Figure 5. These states might be, for example, vibrational
or rotational states in a molecule, or electronic states in
an atom. The objective is to use a chirped, ultrafast laser
pulse to selectively invert the population from the initial
state to a selected final state. One scheme to do this has
been demonstrated previously, both theoretically and ex-
perimentally by Melinger et al. [15,16]. By using a pulse
with a bandwidth larger than the spacing between the lev-
els, they showed that selective population transfer can be
attained. With their method, however, it can be shown
that only the uppermost or lowermost state in the excited
manifold can be populated selectively [15,16,49].

Here we propose a more general scheme that has no
restriction on the final state chosen, provided that the
Franck-Condon factor between the initial state and the
final state is not vanishingly small. In this method,
the optimal laser pulse must have a bandwidth small
enough to overlap significantly only the final state of in-
terest. The frequency is tuned above (below) the desired
final state, and the pulse is chirped negatively (positively)
through resonance. If the pulse is intense enough to fulfill
the adiabatic condition during the excitation process, the
population is inverted selectively from the ground state to
the excited state.

Results for the simple scheme in Figure 5 are presented
in Figure 6. As can be seen in the figure, the area of robust
population transfer has a similar topological structure to
that in the two-level system. There are regions of efficient,
though non-robust, population transfer by π pulses, and
robust areas of transfer by ARP with positive and negative
chirps. This figure suggests that by using an appropriate
bandwidth and chirp, any final state in a manifold cou-
pled to an initial state can be excited selectively. With
intense pulses, a bandwidth smaller than the separation
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Fig. 6. Population transfer to state |2〉 in the four-level system
depicted in Figure 5, as a function of the peak Rabi frequency
Ω0 and spectral linear chirp α′. The center frequency of the
laser is on-resonance with the transition to state |2〉, the du-
ration of the transform-limited pulse is τ0 = 200 fs, and the
separation between states is δ = 400 cm−1. The isolines in the
plot represent final yields of 0.99 (solid line), 0.80 (long-dashed
line), 0.50 (dashed line), and 0.10 (dotted line).

between the levels, and the detuning set to zero at the
time of maximum intensity, successful transfer is guaran-
teed, even when the peak Rabi frequency is larger than the
separation between the states in the final-state manifold.

5 ARP in Iodine

As a realistic example of the model discussed above, we
present results for selective population transfer from theX
ground state to the B excited state in iodine (see Fig. 7).
The initial state is the v = 0 level on the X state, and
the final state is the v′ = 20 level on the B state. For
the numerical examples presented below, we choose a laser
pulse with a bandwidth of 8.87 cm−1 (a transform-limited
pulse length of 600 fs). The exact value of the bandwidth
is not important, as long as it is less than ∼ 90 cm−1, the
energy splitting on the B state near v′ = 20.

Figure 8 shows the population transfer to the v′ = 20
state for three different chirp rates. The population dy-
namics in this figure can be compared to the dynamics
observed in the two-level system in Figures 2–4. For a
transform-limited pulse, α = α′ = 0, and, just as in the
two-level system, 100% population transfer is possible, but
the results are not robust to small changes in the Rabi
frequency. With a chirp of α′ = τ2

0 , or α = 7.4 cm−1/ps,
which is the maximum value of α for this pulse duration,
the population transfer is somewhat more robust. Inter-
estingly, the population transfer becomes more robust as
α′ increases to 10τ2

0 , and α decreases to 2 cm−1/ps. This
corresponds to a point well out on the wings of the plot
of α versus α′ in Figure 1.

Although the results for iodine are similar to those in
a two-level system, iodine cannot, in fact, be reduced to
a two-level system. Considerable dynamics in the vibra-
tional manifold occurs, the details of which are strongly
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Fig. 7. Schematic for selective excitation of the 20th vibra-
tional level of the B electronic state of I2.
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Fig. 8. Selective excitation of the 20th vibrational level of
the B electronic state of I2 as a function of the linear tem-
poral chirp. The duration of the transform-limited pulse is
τ0 = 600 fs. The three curves show the results for α = 0 (filled
circles), α = 7.4 cm−1/ps (open circles), and α = 2.0 cm−1/ps
(solid line).
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Fig. 9. Selective population transfer to the 20th vibrational
level of the electronic B state of I2. The duration and the
Rabi frequency of the transform-limited pulse in each panel
are τ0 = 600 fs, and Ω0 = 0.03 a.u. In panel (a), the temporal
chirp rate is α = −2 cm−1/ps, in panel (b) α = 0, and in panel
(c), α = 2 cm−1/ps. The solid line with filled circles shows the
population of the 20th vibrational level on the B state, the
solid line with open circles shows the total population on
the B state, and the dashed line shows the total population
on the ground state.

affected by the sign and magnitude of the chirp. Figure 9
illustrates population dynamics in the vibrational levels of
ground and excited states for negative, zero and positive
chirps. In this example, the chirped pulses achieve 100%
selective population transfer, while the transform-limited
pulse is only about 50% effective.

The vibrational dynamics during the excitation pro-
cess are shown in Figures 10–12. Notice that in all cases
wave packets are formed on both the ground and excited
states, which implies that multiple vibrational states are
involved in the process. Constructive and destructive in-
terference of the population in these levels must be care-
fully controlled to meet the objective. It is interesting, in
this regard, that both the negative chirp (Fig. 10) and
the positive chirp (Fig. 12) are successful, yet their in-
termediate vibrational dynamics are quite different. We
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Fig. 10. Wave packet dynamics for the case of excitation by
a pulse with a negative chirp. The initial state is v = 0 on
the ground X state of I2, and the target state is the v′ = 20
on the B state. Panel (a) shows the wave packet amplitude,
|ψ(x, t)|2, on the excited state, and panel (b) shows the wave
packet amplitude on the ground state. The pulse parameters
are as in Figure 9a.

believe that the reason for this symmetry is that the adi-
abatic curve-crossing between the ground (v = 0) and
target (v′ = 20) vibrational levels occurs at the peak of
the pulse. At this time, the dressed states responsible for
population transfer with positive and negative chirps have
the identical structure. They are, in fact, simply the time-
reverse of each other. This symmetry can be destroyed by,
for example, changing the detuning, which shifts the time
at which the laser frequency sweeps through resonance.
As a result, the dressed states are no longer symmetric
about the crossing point, and the population transfer is
no longer symmetric with respect to the sign of the chirp.

An additional difference between population transfer
by pulses with negative and positive chirps in molecular
systems is a result of the anharmonicity in the potentials.
This causes variations in the Franck-Condon factors for
transitions to vibrational states above and below the tar-
get state. Vibrational states above the target state are
involved in the population dynamics for negative chirps,
while states below the target state are important for the
dynamics caused by positive chirps. In the iodine results
presented here, the target state is not in the highly anhar-
monic region of the potential. As a result, the dynamics
can compensate for the anharmonicity, and positive and
negative chirps are equally effective.
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Fig. 11. Wave packet dynamics for the case of excitation by
a transform-limited pulse. The initial state is v = 0 on the
ground X state of I2, and the target state is v′ = 20 on the B
state. Panel (a) shows the wave packet amplitude, |ψ(x, t)|2,
on the excited state, and panel (b) shows the wave packet am-
plitude on the ground state. The pulse parameters are as in
Figure 9b.

6 Conclusions

In this paper we present a general theory of chirped ARP
that attempts to unify similar phenomenology observed
in diverse systems from population transfer in two-level
systems to selective vibronic excitation in molecules. We
derive relations to locate the areas of robust population
transfer, and present a modified Landau-Zener formula to
illustrate the relationships among the pulse parameters.

Our results show that in many systems the dominant
effects governing efficient ARP are the Rabi frequency, the
detuning, and the magnitude of the energy level spacing
compared to the bandwidth of the laser pulse. The dynam-
ics of population transfer in such cases is often symmetric
with respect to the sign of the chirp. One example where
this is not the case is selective vibronic excitation in an
anharmonic potential. The I2 results presented here show
that when pulses with quite different chirps achieve ef-
ficient population transfer, the vibrational dynamics can
differ significantly. We note that previous work has sug-
gested that rotational states can adversely affect the se-
lectivity of vibronic excitation [29,30]. Calculations are
underway to investigate this effect.
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Fig. 12. Wave packet dynamics for the case of excitation by
a pulse with a positive chirp. The initial state is v = 0 on the
ground X state of I2, and the target state is v′ = 20 on the B
state. Panel (a) shows the wave packet amplitude, |ψ(x, t)|2,
on the excited state, and panel (b) shows the wave packet am-
plitude on the ground state. The pulse parameters are as in
Figure 9c.

Finally, we demonstrate that a class of experiments
proposed theoretically may in fact be impossible, or more
difficult than predicted due to fundamental limitations on
the magnitude of the temporal chirp that can be applied
to a pulse with a fixed bandwidth (using linear optics).
This is not to say that such experiments cannot be per-
formed using alternative schemes. However, the physical
limitations involved in preparing chirped pulses must be
considered when proposing schemes for experimental ver-
ification of theoretical predictions.
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Scholar of the Research Corporation.
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